quarta-feira, 25 de maio de 2011

Aceleração


Em Física, a aceleração (símbolo: a) é a taxa de variação (ou derivada em função do tempo) da velocidade. Ela é uma grandeza vetorial de dimensão comprimento/tempo² ou velocidade/tempo. Em unidades SI, é quantificada em metro por segundo ao quadrado (m/s²). No CGS, é quantificada em Gal, sendo que um Gal equivale a um centímetro por segundo ao quadrado (cm/s²). Desaceleraçãoé a aceleração que diminui o valor absoluto da velocidade. Para isso, a aceleração precisa ter componente negativa na direção da velocidade. Isto não significa que a aceleração é negativa. Assim a aceleração é a rapidez com a qual a velocidade de um corpo varia. Desta forma o único movimento que não possui aceleração é o MRU - movimento retilíneo uniforme.
Acelerar um corpo é variar sua velocidade em um período de tempo:

\mathbf{a} = {d\mathbf{v}\over dt},
em que:
  • a é o vetor aceleração;
  • v é o vetor velocidade;
  • t é o tempo.
aceleração média é dada por:

\mathbf{\bar{a}} = {\mathbf{v}_f - \mathbf{v}_i \over t_f - t_i}  = {\Delta \mathbf{v} \over \Delta t},
em que:
  • \mathbf{\bar{a}} é a aceleração média;
  • \mathbf{v}_i é a velocidade inicial;
  • \mathbf{v}_f é a velocidade final;
  • \mathbf{t}_i é o tempo inicial;
  • \mathbf{t}_f é o tempo final.
A aceleração transversa (perpendicular à velocidade) causa mudança na direção. Se esta for constante em intensidade e sua direção permanecer ortogonal à velocidade, temos ummovimento circular. Para esta aceleração centrípeta temos
 \mathbf{a} = - \frac{v^2}{r} \frac{\mathbf{r}}{r} = - \omega^2 \mathbf{r}
Um valor de uso comum para a aceleração é g, a aceleração causada pela gravidade daTerra ao nível do mar a 45° de latitude, cerca de 9,81 m/s²
Na mecânica clássica, a aceleração \mathbf{a} está relacionada com a força \mathbf{F} e a massa \mathbf{m}(assumida ser constante) por meio da segunda lei de Newton:

F = m \cdot a
Como resultado de sua invariância sob transformações galileanas, a aceleração é uma quantidade absoluta na mecânica clássica.
Depois de definir sua teoria da relatividade especialAlbert Einstein enunciou que forças sentidas por objetos sob aceleração constante são indistingüíveis da que estão em campo gravitacional, e assim se define a relatividade geral (que também explica como os efeitos da gravidade podem limitar a velocidade da luz, mas isso é outra história).
O ponto-chave da relatividade geral é que ele responde a: "por que somente um objeto se sente acelerado?", um problema que tem flagelado filósofos e cientistas desde o tempo de Newton (e fez Newton endossar o conceito de espaço absoluto). Por exemplo, se você pegar seu carro e acelerar se afastando de seu amigo, você poderia dizer (dado seu referencial) que é seu amigo que está acelerando se afastando de você, enquanto somente você sente qualquer força. Essa é a base do popular paradoxo dos gêmeos que pergunta por que somente um gêmeo envelhece quando se afasta movendo-se próximo da velocidade da luz e então retornando, pois o gêmeo mais velho pode dizer que o outro é que estava se movendo.
Na relatividade especial, somente referenciais inerciais (referenciais não-acelerados) podem ser usados e são equivalentes; a relatividade geral considera todos os referenciais, inclusive os acelerados, como equivalentes.

[editar]Ver também

Cálculo Vetorial


Cálculo vetorial (português brasileiro) ou cálculo vectorial (português europeu) é uma área da matemáticarelacionada com a análise real multivariável de vectores em duas ou mais dimensões. Consiste num conjunto de fórmulas e técnicas para a resolução de problemas, muito útil na engenharia e na física.
Consideremos um campo vectorial, que associa um vector a cada ponto no espaço, e um campo escalar, que associa um escalar a cada ponto no espaço. Por exemplo, a temperatura de uma piscina é um campo escalar: a cada ponto podemos associar um valor escalar para a temperatura. O fluir da água nessa mesma piscina é um campo vectorial: a cada ponto podemos associar um vector velocidade.

[editar]História

Os quaternions foram descobertos pelo irlandês William Rowan Hamilton em 1843. Hamilton procurava formas de estender os números complexos (que podem ser vistos como pontos de um plano) a dimensões espaciais mais elevadas. Quaternions são feitos de um vector de três dimensões mais um escalar.
Posteriormente, Oliver Heaviside e Willard Gibbs entre outros, desenvolveram a álgebra vectorial e o cálculo vectorial.
Alguns dos apoiantes de Hamilton opuseram-se fortemente aos desenvolvimentos crescentes da álgebra vectorial e cálculo vectorial, afirmando que os quaternions forneciam uma notação superior. Se bem que isto é discutível em três dimensões, os quaternions não podem ser usados em outras dimensões (apesar de extensões como as dos octonions e álgebra de Clifford poderem ser mais aplicáveis). A notação vectorial substituiu quase universalmente os quaternions na ciência e engenharia por volta dos meados do século XX.

[editar]Noções

  • Campo -- É uma região do espaço matemático onde há grandezas associadas a seus pontos. Se essas grandezas se mantêm constantes ao longo do tempo dizemos que esse campo é estável; se elas tem a mesma direção em todos os pontos dizemos que o campo é UNIFORME; se elas são iguais em todos os pontos dizemos que o campo é HOMOGÊNEO.
  • Escalar -- é o nome que se dá a grandezas reais associadas a pontos do espaço. Não possuem sentido ou direção. Exemplos: massa,temperaturadensidade.
  • Vectores -- são objectos ou entes matemáticos constituídos pela associação de um módulo (ou valor absoluto), direcção e sentido a cada ponto do espaço. Exemplos: velocidade linearaceleraçãoforçavelocidade de rotação.
Graficamente, costuma-se representar o vector por uma seta ligando dois pontos do espaço geométrico, que geralmente são designados como letras maiúsculas entre parêntesis; Sendo (O) seu ponto de origem e (P) seu ponto de extremidade, o vector pode então ser simbolizado pela associação desses dois pontos, ou seja, por (OP); seu módulo é simbolizado por |OP|. Outro simbolismo frequente consiste em designar o vector por uma letra minúscula sobreposta de uma pequena seta.
  • Álgebra vetorial -- É a área da matemática que trata da operações e transformações de vetores; as definições usadas na álgebra numérica são extensíveis à álgebra vetorial. As definições fundamentais são:
    1. dois vetores são iguais se tem o mesmo módulo, sentido e direção, mesmo que tenham origem em pontos diferentes. Assim (AB) = (CD) se |AB| = |CD| e ambos tem o mesmo sentido e direção.
    2. dois vetores que tenham o mesmo módulo e direção, porém sentidos opostos são chamados de opostos e podem ser representados com a mesma designação, porém uma com o sinal negativo. Exemplo: (AB) = - (BA)
    3. a soma ou resultante de vetores é obtido colocando-se a origem de um na extremidade de outro, independendo da sequência ou ordem de colocação. Assim a resultante de [(OA) +(AB) + (BC)] é (OC)
    4. a diferença entre os vetores [(AB) - (CD)] é o vetor (OP) tal que [(OP) + (CD)] = (AB). Define-se como vetor nulo o vetor cujo módulo é igual a zero. O vetor nulo não tem sentido ou direção.
    5. o produto de um escalar m por um vetor (AB) é um vetor de mesma direção de (AB), módulo igual a [m.|AB|], mesmo sentido se m > 0 e sentido oposto se m< 0.
  • Leis operacionais -- Para adição de vetores ou multiplicação de vetor por escalar, valem as leis associativas e comutativas, ou seja:
    1. [(AB) + (CD)] = [(CD) + (AB)] - lei comutativa da adição
    2. (AB) + [(CD) + (EF)] = [(AB) + (CD)] + (EF) - lei associativa da adição
    3. n\cdot (AB) = (AB)\cdot n
    4. m\cdot [n\cdot (AB)] = [m\cdot n]\cdot (AB) - lei comutativa da multiplicação
    5. [m + n]\cdot (AB) = m\cdot (AB) + n\cdot (AB) - lei distributiva
    6. m\cdot [(AB) + (CD)] = m\cdot (AB) + m\cdot (CD) - lei distributiva
  • Produto escalar de dois vetores - É definido como o escalar resultante do produto dos módulos dos vetores e do cosseno do ângulo formado entre eles. Ex.(AB)\cdot (CD) = |AB|\cdot|CD|\cdot\cos \theta, sendo θ o ângulo entre AB e CD.
  • Produto vetorial de dois vetores - É definido como um vetor cujo módulo é o resultado do produto dos módulos dos dois vetores multiplicandos e o seno do ângulo que eles formam; sua direção é perpendicular ao plano definido pelos vetores multiplicandos e o sentido é tal que os dois vetores multiplicandos e o resultante cujo módulo, pela ordem, formem um triédro positivo.
Note-se que o módulo do vetor resultante é igual à área do paralelogramo construído pelos vetores multiplicandos. A lei associativa da multiplicação não se aplica a produtos vetoriais.
  • Produtos triplos -- São operações envolvendo simultaneamente produtos escalares e vetoriais entre vários vetores, para as quais, em geral, não se aplicam as leis comutativas e associativas.

[editar]Ver também

  •  Portal da ciência

  •  
  •  Portal da matemática

  •  (português brasileiro) ou cálculo vectorial (português europeu) é uma área da matemáticarelacionada com a análise real multivariável de vectores em duas ou mais dimensões. Consiste num conjunto de fórmulas e técnicas para a resolução de problemas, muito útil na engenharia e na física.
    Consideremos um campo vectorial, que associa um vector a cada ponto no espaço, e um campo escalar, que associa um escalar a cada ponto no espaço. Por exemplo, a temperatura de uma piscina é um campo escalar: a cada ponto podemos associar um valor escalar para a temperatura. O fluir da água nessa mesma piscina é um campo vectorial: a cada ponto podemos associar um vector velocidade.

    [editar]História

    Os quaternions foram descobertos pelo irlandês William Rowan Hamilton em 1843. Hamilton procurava formas de estender os números complexos (que podem ser vistos como pontos de um plano) a dimensões espaciais mais elevadas. Quaternions são feitos de um vector de três dimensões mais um escalar.
    Posteriormente, Oliver Heaviside e Willard Gibbs entre outros, desenvolveram a álgebra vectorial e o cálculo vectorial.
    Alguns dos apoiantes de Hamilton opuseram-se fortemente aos desenvolvimentos crescentes da álgebra vectorial e cálculo vectorial, afirmando que os quaternions forneciam uma notação superior. Se bem que isto é discutível em três dimensões, os quaternions não podem ser usados em outras dimensões (apesar de extensões como as dos octonions e álgebra de Clifford poderem ser mais aplicáveis). A notação vectorial substituiu quase universalmente os quaternions na ciência e engenharia por volta dos meados do século XX.

    [editar]Noções

    • Campo -- É uma região do espaço matemático onde há grandezas associadas a seus pontos. Se essas grandezas se mantêm constantes ao longo do tempo dizemos que esse campo é estável; se elas tem a mesma direção em todos os pontos dizemos que o campo é UNIFORME; se elas são iguais em todos os pontos dizemos que o campo é HOMOGÊNEO.
    • Escalar -- é o nome que se dá a grandezas reais associadas a pontos do espaço. Não possuem sentido ou direção. Exemplos: massa,temperaturadensidade.
    • Vectores -- são objectos ou entes matemáticos constituídos pela associação de um módulo (ou valor absoluto), direcção e sentido a cada ponto do espaço. Exemplos: velocidade linearaceleraçãoforçavelocidade de rotação.
    Graficamente, costuma-se representar o vector por uma seta ligando dois pontos do espaço geométrico, que geralmente são designados como letras maiúsculas entre parêntesis; Sendo (O) seu ponto de origem e (P) seu ponto de extremidade, o vector pode então ser simbolizado pela associação desses dois pontos, ou seja, por (OP); seu módulo é simbolizado por |OP|. Outro simbolismo frequente consiste em designar o vector por uma letra minúscula sobreposta de uma pequena seta.
    • Álgebra vetorial -- É a área da matemática que trata da operações e transformações de vetores; as definições usadas na álgebra numérica são extensíveis à álgebra vetorial. As definições fundamentais são:
      1. dois vetores são iguais se tem o mesmo módulo, sentido e direção, mesmo que tenham origem em pontos diferentes. Assim (AB) = (CD) se |AB| = |CD| e ambos tem o mesmo sentido e direção.
      2. dois vetores que tenham o mesmo módulo e direção, porém sentidos opostos são chamados de opostos e podem ser representados com a mesma designação, porém uma com o sinal negativo. Exemplo: (AB) = - (BA)
      3. a soma ou resultante de vetores é obtido colocando-se a origem de um na extremidade de outro, independendo da sequência ou ordem de colocação. Assim a resultante de [(OA) +(AB) + (BC)] é (OC)
      4. a diferença entre os vetores [(AB) - (CD)] é o vetor (OP) tal que [(OP) + (CD)] = (AB). Define-se como vetor nulo o vetor cujo módulo é igual a zero. O vetor nulo não tem sentido ou direção.
      5. o produto de um escalar m por um vetor (AB) é um vetor de mesma direção de (AB), módulo igual a [m.|AB|], mesmo sentido se m > 0 e sentido oposto se m< 0.
    • Leis operacionais -- Para adição de vetores ou multiplicação de vetor por escalar, valem as leis associativas e comutativas, ou seja:
      1. [(AB) + (CD)] = [(CD) + (AB)] - lei comutativa da adição
      2. (AB) + [(CD) + (EF)] = [(AB) + (CD)] + (EF) - lei associativa da adição
      3. n\cdot (AB) = (AB)\cdot n
      4. m\cdot [n\cdot (AB)] = [m\cdot n]\cdot (AB) - lei comutativa da multiplicação
      5. [m + n]\cdot (AB) = m\cdot (AB) + n\cdot (AB) - lei distributiva
      6. m\cdot [(AB) + (CD)] = m\cdot (AB) + m\cdot (CD) - lei distributiva
    • Produto escalar de dois vetores - É definido como o escalar resultante do produto dos módulos dos vetores e do cosseno do ângulo formado entre eles. Ex.(AB)\cdot (CD) = |AB|\cdot|CD|\cdot\cos \theta, sendo θ o ângulo entre AB e CD.
    • Produto vetorial de dois vetores - É definido como um vetor cujo módulo é o resultado do produto dos módulos dos dois vetores multiplicandos e o seno do ângulo que eles formam; sua direção é perpendicular ao plano definido pelos vetores multiplicandos e o sentido é tal que os dois vetores multiplicandos e o resultante cujo módulo, pela ordem, formem um triédro positivo.
    Note-se que o módulo do vetor resultante é igual à área do paralelogramo construído pelos vetores multiplicandos. A lei associativa da multiplicação não se aplica a produtos vetoriais.
    • Produtos triplos -- São operações envolvendo simultaneamente produtos escalares e vetoriais entre vários vetores, para as quais, em geral, não se aplicam as leis comutativas e associativas.

    [editar]Ver também